slide_bn

slide_bn02

NVIDIA DEEP LEARNING INSTITUTE

ȨÀ¸·ÎNVIDIA Deep Learning Institute

NVIDIA DEEP LEARNING INSTITUTE

ÇÑÄľÆÄ«µ¥¹Ì´Â ±¹³» ÃÖÃÊÀÇ NVIDIA DLI(Deep Learning Institute) °øÀÎ ±³À°¼¾ÅÍ·Î, Multi GPU, CUDA µî NVIDIAÀÇ ÇÚÁî¿Â µö·¯´× ½Ç½À ±³À° °úÁ¤À» Á¦°øÇÕ´Ï´Ù.
NVIDIA DLI´Â °³¹ßÀÚ, µ¥ÀÌÅÍ °úÇÐÀÚ ¹× ¿¬±¸¿ø¿¡°Ô ÀΰøÁö´É ¹× °¡¼ÓÈ­µÈ ÄÄÇ»ÆÃÀ» »ç¿ëÇÏ¿© ÀÚÀ²ÁÖÇà ÀÚµ¿Â÷, ÇコÄɾî, À繫 µî ´Ù¾çÇÑ ¿µ¿ªÀÇ ½ÇÁ¦ ¹®Á¦¸¦ ÇØ°áÇÏ´Â ¹æ¹ýÀ» ±³À°ÇÕ´Ï´Ù.
µö·¯´× °úÁ¤¿¡¼­´Â ÃֽŠµµ±¸, ÇÁ·¹ÀÓ ¿öÅ© ¹× ±â¼úÀ» »ç¿ëÇÏ¿© ½Å°æ ³×Æ®¿öÅ©¸¦ ÇнÀÇÏ°í, ÃÖÀûÈ­ ¹× ¹èÆ÷ÇÏ´Â ¹æ¹ýÀ» ÇнÀÇÒ ¼ö ÀÖ½À´Ï´Ù. °¡¼Ó ÄÄÇ»Æà °­Á¿¡¼­´Â ±¤¹üÀ§ÇÑ ÀÀ¿ë ÇÁ·Î±×·¥ ¿µ¿ª¿¡¼­ GPU °¡¼Ó ÄÄÇ»Æà ÀÀ¿ë ÇÁ·Î±×·¥À» Æò°¡, º´·ÄÈ­, ÃÖÀûÈ­ ¹× ¹èÆ÷ÇÏ´Â ¹æ¹ýÀ» ¹è¿ì°Ô µË´Ï´Ù.

logo

NVIDIA DLI °øÀÎ °­»ç

ÇÑÄľÆÄ«µ¥¹Ì´Â ±î´Ù·Î¿î ½É»ç¸¦ Åë°úÇÑ DLI °øÀÎ °­»ç¸¦ º¸À¯ÇÏ°í ÀÖ½À´Ï´Ù.

learn

NVIDIA DLI ±³À° °úÁ¤

Fundamentals of Accelerated Computing With CUDA C/C++(6h)

  • Accelerating Applications with CUDA C/C++ (120¡¯)
  • Managing Accelerated Application Memory with CUDA C/C++ (120¡¯)
  • Asynchronous Streaming and Visual Profiling for Accelerated Applications with CUDA C/C++ (120¡¯)

Fundamentals of Accelerated Computing With CUDA Python(6h)

  • Introduction to CUDA Python with Numba (120')
  • Custom CUDA Kernels in Python with Numba(120')
  • RNG, Multidimensional Grids, and Shared Memory for CUDA Python with Numba (120')

Accelerating CUDA¢ç C++ Applications With Multiple GPUs(6h)

  • Using JupyterLab (15')
  • Application Overview (15')
  • Introduction to CUDA Streams (90')
  • Copy/Compute Overlap with CUDA Streams (90')
  • Multiple GPUs with CUDA C++ (60')
  • Copy/Compute Overlap with Multiple GPUs (60')
  • Course Assessment (30')

Fundamentals of DeepLearning(6h)

  • The Mechanics of Deep Learning (120')
  • Pre-trained Models and Recurrent Networks(120')
  • Final Project: Object Classification (120')

Building AI-Based Cybersecurity Pipelines(6h)

  • An Overview of the NVIDIA Morpheus AI Framework (30')
  • Morpheus Pipeline Construction (45')
  • Inference in Morpheus Pipelines (45')
  • Case Study: AI-Based Machine Log Parsing at Splunk (30')
  • Digital Fingerprinting Pipeline (45')
  • Time Series Analysis (45')
  • Case Study: Cybersecurity Flyaway Kit at Booz Allen Hamilton (30')
  • Assessment 1: Test Your Understanding(45')
  • Assessment 2: Practical Demonstration (45')

Model Parallelism: Building and Deploying Large Neural Networks(6h)

  • Introduction to Training of Large Models (120¡¯)
  • Model Parallelism: Advanced Topics (120¡¯)
  • Inference of Large Models (120¡¯)

Data Parallelism: How to Train Deep Learning Models on Multiple GPUs(6h)

  • Stochastic Gradient Descent and the Effects of Batch Size (120')
  • Training on Multiple GPUs with PyTorch Distributed Data Parallel (DDP) (120')
  • Maintaining Model Accuracy when Scaling to Multiple GPUs (90')
  • Workshop Assessment(30')

±³À° ½ÅûÇϱ⠰úÁ¤¼Ò°³¼­ ´Ù¿î·Îµå