NVIDIA DEEP LEARNING INSTITUTE
NVIDIA Deep Learning Institute
NVIDIA DEEP LEARNING INSTITUTE
ÇÑÄľÆÄ«µ¥¹Ì´Â ±¹³» ÃÖÃÊÀÇ NVIDIA DLI(Deep Learning Institute) °øÀÎ ±³À°¼¾ÅÍ·Î, Multi GPU, CUDA µî NVIDIAÀÇ ÇÚÁî¿Â µö·¯´× ½Ç½À ±³À° °úÁ¤À» Á¦°øÇÕ´Ï´Ù.
NVIDIA DLI´Â °³¹ßÀÚ, µ¥ÀÌÅÍ °úÇÐÀÚ ¹× ¿¬±¸¿ø¿¡°Ô ÀΰøÁö´É ¹× °¡¼ÓÈµÈ ÄÄÇ»ÆÃÀ» »ç¿ëÇÏ¿© ÀÚÀ²ÁÖÇà ÀÚµ¿Â÷, ÇコÄɾî, À繫 µî ´Ù¾çÇÑ ¿µ¿ªÀÇ ½ÇÁ¦ ¹®Á¦¸¦ ÇØ°áÇÏ´Â ¹æ¹ýÀ» ±³À°ÇÕ´Ï´Ù.
µö·¯´× °úÁ¤¿¡¼´Â ÃֽŠµµ±¸, ÇÁ·¹ÀÓ ¿öÅ© ¹× ±â¼úÀ» »ç¿ëÇÏ¿© ½Å°æ ³×Æ®¿öÅ©¸¦ ÇнÀÇÏ°í, ÃÖÀûÈ ¹× ¹èÆ÷ÇÏ´Â ¹æ¹ýÀ» ÇнÀÇÒ ¼ö ÀÖ½À´Ï´Ù. °¡¼Ó ÄÄÇ»Æà °Á¿¡¼´Â ±¤¹üÀ§ÇÑ ÀÀ¿ë ÇÁ·Î±×·¥ ¿µ¿ª¿¡¼ GPU °¡¼Ó ÄÄÇ»Æà ÀÀ¿ë ÇÁ·Î±×·¥À» Æò°¡, º´·ÄÈ, ÃÖÀûÈ ¹× ¹èÆ÷ÇÏ´Â ¹æ¹ýÀ» ¹è¿ì°Ô µË´Ï´Ù.
NVIDIA DLI °øÀÎ °»ç
ÇÑÄľÆÄ«µ¥¹Ì´Â ±î´Ù·Î¿î ½É»ç¸¦ Åë°úÇÑ DLI °øÀÎ °»ç¸¦ º¸À¯ÇÏ°í ÀÖ½À´Ï´Ù.
NVIDIA DLI ±³À° °úÁ¤
Fundamentals of Accelerated Computing With CUDA C/C++(6h)
- Accelerating Applications with CUDA C/C++ (120¡¯)
- Managing Accelerated Application Memory with CUDA C/C++ (120¡¯)
- Asynchronous Streaming and Visual Profiling for Accelerated Applications with CUDA C/C++ (120¡¯)
Fundamentals of Accelerated Computing With CUDA Python(6h)
- Introduction to CUDA Python with Numba (120')
- Custom CUDA Kernels in Python with Numba(120')
- RNG, Multidimensional Grids, and Shared Memory for CUDA Python with Numba (120')
Accelerating CUDA¢ç C++ Applications With Multiple GPUs(6h)
- Using JupyterLab (15')
- Application Overview (15')
- Introduction to CUDA Streams (90')
- Copy/Compute Overlap with CUDA Streams (90')
- Multiple GPUs with CUDA C++ (60')
- Copy/Compute Overlap with Multiple GPUs (60')
- Course Assessment (30')
Fundamentals of DeepLearning(6h)
- The Mechanics of Deep Learning (120')
- Pre-trained Models and Recurrent Networks(120')
- Final Project: Object Classification (120')
Building AI-Based Cybersecurity Pipelines(6h)
- An Overview of the NVIDIA Morpheus AI Framework (30')
- Morpheus Pipeline Construction (45')
- Inference in Morpheus Pipelines (45')
- Case Study: AI-Based Machine Log Parsing at Splunk (30')
- Digital Fingerprinting Pipeline (45')
- Time Series Analysis (45')
- Case Study: Cybersecurity Flyaway Kit at Booz Allen Hamilton (30')
- Assessment 1: Test Your Understanding(45')
- Assessment 2: Practical Demonstration (45')
Model Parallelism: Building and Deploying Large Neural Networks(6h)
- Introduction to Training of Large Models (120¡¯)
- Model Parallelism: Advanced Topics (120¡¯)
- Inference of Large Models (120¡¯)
Data Parallelism: How to Train Deep Learning Models on Multiple GPUs(6h)
- Stochastic Gradient Descent and the Effects of Batch Size (120')
- Training on Multiple GPUs with PyTorch Distributed Data Parallel (DDP) (120')
- Maintaining Model Accuracy when Scaling to Multiple GPUs (90')
- Workshop Assessment(30')
±³À° ½ÅûÇϱ⠰úÁ¤¼Ò°³¼ ´Ù¿î·Îµå